摘要
针对基于精度的现有分类算法对不平衡数据挖掘表现出“有偏性”,即正例样本的分类和预测性能差于反例样本的分类和预测性能,基于-νSVM及其启发,提出支持向量数和边界支持向量数的界,进而提出支持向量率和边界支持向量率的界,并把这些界分别扩展到正例和反例.在此基础上,证明了正例的支持向量率和边界支持向量率分别依概率大于反例的支持向量率和边界支持向量率,以及正例的分类性能依概率差于反例的分类性能.针对German credit和Heart disease两个Benchmark数据集的试验研究,验证了本文假设的合理性和上述结论的正确性.
- 单位