摘要
近年来,许多基于深度学习的方法被用于故障诊断领域,并且取得了良好的效果,但是发电机故障样本数据难以获取,在数据量较少的情况下,基于深度学习的方法存在过拟合现象,导致模型泛化能力差、诊断精度不高.为了解决这一问题,提出一种基于随机变分推理贝叶斯神经网络的故障诊断方法.该方法以贝叶斯推理与随机变分推理为基础,可以根据少量数据得到较为可靠的模型,获得网络各层参数的概率分布,有效解决过拟合的问题.采用证据下限(evidence lower bound, ELBO)派生类函数TraceGraph ELBO进行随机变分推理,解决派生类函数Trace ELBO诊断精度较低的问题.将所提方法应用于发电机轴承的故障诊断,并与其他方法对比,结果表明,所提方法在故障样本数据量较少的情况下具有较高的诊断性能.
- 单位