摘要
为了提升反向散射网络中物联网设备的平均吞吐量,提出了一种资源分配机制,构建了用户配对和时隙分配联合优化资源分配模型。由于该模型直接利用深度强化学习(Deep Reinforcement Learning, DRL)算法求解导致动作空间维度较高且神经网络复杂,故将其分解为两层子问题以降低动作空间维度:首先,基于深度强化学习算法,利用历史信道信息推断当前的信道信息以进行最优的用户配对;然后,在用户固定配对的情况下,基于凸优化算法,以最大化物联网设备总吞吐量为目标进行最优的时隙分配。仿真结果表明,与其他资源分配方法相比,所提资源分配方法能有效提升系统吞吐量,且有较好的信道适应性和收敛性。
- 单位