摘要

针对多机器人在未知区域的覆盖搜索问题,提出一种基于生物启发神经网络和分布式模型预测控制(DMPC)的多机器人协同搜索算法.利用栅格地图表示未知区域,基于栅格地图建立生物启发神经网络来表示动态搜索环境,生物启发神经网络中未搜索栅格的神经元活性值大于已搜索栅格和障碍物栅格.在此基础上,为了平衡机器人覆盖搜索过程中的短期收益和长期收益,避免后期陷入局部最优,引入DMPC作为决策方法.选择预测周期内机器人所覆盖栅格的神经元活性值增量作为主要激励函数,引导机器人向未覆盖区域搜索,并采用差分进化算法(DE)进行优化求解,得到最优解.最后通过设计仿真实验验证了所提出方法的有效性和优越性.