摘要
异常事件检测由于其在视频监控场景中的重要性而引起了广泛的关注。但是由于缺乏异常标注样本,使得这个问题较难解决。提出了一种新的部分监督学习方法,仅采用正常样本训练检测模型以进行视频异常事件检测和定位。假设所有正常样本的分布符合一个高斯分布,那么异常样本在这个高斯分布中将以较低的概率出现。该方法基于变分自编码器(VAE),通过端对端的深度学习技术,将正常样本的隐层表示约束成一个高斯分布。给定测试样本,通过变分自编码器获得其隐层表示,计算其隐层表示属于高斯分布的概率,并根据检测门限判断其是否异常。在两个公开的数据集(UCSD dataset和avenue dataset)上的实验结果表明,所提出的方法达到了92.3%的帧级AUC和82.1%的帧级AUC,以及571 fps的检测速度,在性能和效率上明显高于现有检测方法。
-
单位山东劳动职业技术学院; 山东交通学院