摘要
随着深度学习的持续发展,近年来用于手写汉字的识别也有了极大的突破,但现有的许多方法参数众多、运算量较大、模型架构庞大且相对复杂,所需存储容量大,对实验的环境要求较高。针对以上问题,提出了基于MobilenetV2的汉字识别,采用深度可分离卷积,相对于其他的网络模型,在运算量、模型架构等问题上化繁为简,且MobilenetV2网络模型是在MobilenetV1的基础上进行改进的,增加了线性瓶颈和倒残差。一是扩充了通道数用来提取更多的特征信息,二是使用线性函数替换ReLU用来降低变换过程中信息的损失率。适合于移动设备设计,通过大型中间张量来显著减少内存占用,其综合识别的准确率可以达到92%以上。
- 单位