针对现实生活中垃圾分类知识普及不够,许多城市和学校都面临着垃圾分类困难的问题,利用神经网络对分类问题的高效性和准确性,通过一种基于ResNet网络和SENet网络的深度残差收缩网络实现垃圾图像分类。通过对Garbage数据集进行筛选得到实验所需数据集,并对ResNet进行改进,将SENet和软阈值化操作加入ResNet结构中。实验结果表明,该方法通过网络训练和超参数调整,得到了较好的识别率,在校园垃圾分类中获得了较好的识别效果,具有一定可行性。