针对图像训练样本中存在噪声等情况,提出一种基于鉴别性低秩表示的2阶段人脸识别算法。该算法第1阶段是对所有训练样本进行低秩处理,筛选出M类与测试样本最相近的样本用于粗分类;第2阶段使用第1阶段筛选出来的样本做鉴别性低秩表示处理,并使用稀疏线性表示进行精细分类,决定测试样本最适合的类标签。本算法结合了低秩算法与稀疏算法的优点,在标准人脸库上的实验表明本算法表现优越。