摘要

为实现开阳枇杷糖度的快速无损检测,采用紫外/可见光纤光谱仪采集开阳枇杷的反射光谱,探究比较标准正态变换以及多元散射校正预处理原始光谱的效果;应用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)、连续投影算法以及组合两种方法分别筛选特征变量,基于筛选的特征变量构建预测开阳枇杷糖度的反向传播(back propagation,BP)神经网络检测模型。结果表明:标准正态变换预处理效果相对较好;基于CARS从835个全变量中筛选出49个特征变量,使模型的运算效率明显提高;构建的枇杷糖度预测模型中,CARS-BP的性能最好,预测集相关系数为0.91,均方根误差为0.56%,剩余预测偏差为2.42。表明采用紫外/可见光谱结合BP神经网络适用于开阳枇杷糖度的快速无损检测,为后期在线无损检测设备的研发提供参考。

  • 单位
    贵阳学院