摘要

用传统模糊c均值聚类算法分割图像时,类内数据空间分布离散.针对这一问题,提出一种基于全局空间相似性模糊聚类算法.算法建立全局空间相似性度量标准和全局灰度相似性度量标准,分别计算图像中任意一点与聚类中心点的空间相似性和灰度相似性;通过调整参数来控制两种特征在节点间差异计算中所占的比重,增强了分割结果中类内数据样本空间分布的连续性.分别对3类具有不同特征的图像进行仿真实验,结果表明,与传统FCM算法相比,本文算法分割结果更加精确,更能满足用户的实际需要.