摘要

针对滚动轴承早期故障微弱难以识别、无法有效提取故障信息特征的问题,提出一种基于SSA优化的结合了变分模态分解与熵的特征值提取方法。方法利用麻雀搜寻算法对变分模态分解算法中的参数进行寻优,将包络熵选取为目标函数;根据峭度筛选后续需要的IMF分量,计算筛选后的IMF分量的样本熵与排列熵共同组成特征向量;采用WOA-SVM进行诊断识别,以验证该方法的有效性。经实验分析与对比,本方法能够有效提取信号的特征值,显著提高了分类识别的准确率。