摘要
针对脑部磁共振(MR)图像分割问题,提出了一种基于克隆选择算法(CSA)和隐马尔可夫随机场(HMRF)的融合方法。首先,采用马尔可夫链蒙特卡尔(MCMC)算法对类标签进行估计,进行体素分类;然后,对分割结果进行偏场校正;最后,利用CSA的统计学进行HMRF模型参数估计,并利用迭代优化算法获得最终的分割结果。由于MCMC和CSA都是全局优化技术,所以HMRF-CSA算法能够克服传统HMRF方法的局部收敛以及较低分割精度的缺点。在仿真脑部MR图像集BrainWeb上的实验结果表明,对于主要脑部结构,算法的分割精度高于其他几种算法;且对图像伪影具有鲁棒性。
-
单位新疆工程学院