摘要
秸秆覆盖率是保护性耕作重要的评价指标之一。针对田间秸秆形态各异、细碎秸秆难以识别的难题,基于机器视觉技术,提出了一种基于K-means和彩色空间距离灰度化方法相结合的田间秸秆覆盖率检测算法。采用彩色空间距离方法对秸秆图像进行预处理,基于K-means算法实现秸秆和土壤背景的分类识别,使用数学形态学腐蚀和膨胀方法对识别后的图像进行处理,降低细碎秸秆对覆盖率的影响,最后计算秸秆图像的覆盖率。2022年10月,通过田间试验对北京小汤山国家精准农业研究示范基地采集的220幅玉米秸秆图像进行了算法验证。试验结果表明,对低秸秆覆盖率(0~30%)图像,识别准确率达到90%;对中等秸秆覆盖率(30%~60%)图像,识别准确率达到88%;对高秸秆覆盖率(60%以上)图像,识别准确率达到86%;整体秸秆覆盖率分等定级准确度达到98.18%。本研究设计的基于K-means和彩色空间距离灰度化方法相结合的田间秸秆覆盖率检测算法为保护性耕作评价提供了快速检测方法和手段。
- 单位