摘要

针对机载LiDAR建筑物点云提取过程中与树木紧邻的建筑物难以提取,已有先滤波后提取算法效率低等问题,提出一种结合区域生长与主成分分析的机载LiDAR建筑物点云提取算法。该算法首先对粗差剔除后的机载LiDAR离散点云构建TIN三角网,依据建筑物边缘点所在三角形的特征提取建筑物边缘点;然后将邻域特征优化后的建筑物边缘点作为种子点进行区域生长得到建筑物点云;最后采用主成分分析对提取结果进行检核,剔除非建筑物点云,在此基础上基于连通性对建筑物点云进行单体化分割,剔除小面积区域,得到最终的建筑物激光脚点数据。实验选取国际摄影测量与遥感协会提供的三组典型区域的LiDAR点云数据进行建筑物提取,并与传统形态学和区域生长两种建筑物点云提取算法进行比较,结果表明本文算法可以实现建筑物点云的高精度提取,且对地形及不同类型屋顶的建筑物具有良好的自适应性,验证了算法的可靠性。

全文