摘要
密度峰值算法依赖于欧式距离实现局部密度的选择,该算法在处理高维数据、存在密度不均匀的类簇的数据集上效果不是很理想。针对以上问题,提出一种融合流形距离与标签传播的改进密度峰值聚类算法(improved density peak clustering combining manifold distance and label propagation, DPC-ML)。DPC-ML使用流形距离进行距离度量并形成流形距离矩阵,同时定义了一种局部密度,将流形距离与局部密度融合,让局部密度反映出一定的局部距离信息。实验数据表明该算法在处理不同形状,密度不均匀的类簇上有着良好的性能。而且通过绘制决策图发现在不同的人工数据集上的实验显示DPC-ML算法重新定义的局部密度对于类簇中心点的选择区分度更高。由于引入了新的参数邻近点数,故也探究了邻近点数对聚类结果的影响,发现在聚类指标在刚成为连通图时效果最好,进一步证明了流形距离可以对聚类结果性能有所提高。
- 单位