摘要
本发明公开了一种基于高约束高分散主成分分析网络的图像分类方法,包括如下步骤:卷积及非线性变化步骤:在卷积层中,获取用于每个阶段特征提取的多个卷积核;在非线性变换层中,利用卷积核对于输入图像进行非线性变换,得到特征图;特征池化步骤:在特征池化层中,引入多尺度特征分析公式,推导出满足高分散性分布公式及其尺度缩放因子σ最优的取值后,输出特征;整合步骤:将特征展开为向量,并利用向量组成特征矩阵;图像分类步骤:特征输入线性支持向量机中以完成图像分类任务。本发明简单高效,具有自适应和扩展性,只需要输入网络的结构参数即可。
- 单位