摘要

随着我国电网建设的高速发展,从日常电力负荷变化趋势剖析未来年度用电量已经成为电网建设的关键问题之一。根据1997~2016年湖北省年用电量及其10个影响因子的数据作为样本,提出了一种自组织特征映射神经网络(Self-organizing Feature Maps,SOM)与多变量的径向基函数(Radial Basis Function,RBF)结合的人工神经网络预测模型新方法。采用先聚类、再分类预测的方法,解决了由于RBF神经网络对于少量样本和训练样本点分散所导致的预测精度降低的问题,改进的神经网络泛化能力有所提高。结果表明:通过SOM-RBF组合算法进行预测,其相对误差维持在3%以下,平均相对误差为1.88%,预测效果较BP神经网络和RBF神经网络有较大的提升。这表明SOM-RBF组合算法可有效的用于用电量预测,具有较高的实用价值。