摘要

采用地面激光扫描获取树木的光探测和测距数据,并将其作为遥感数据源,选取水杉、棕榈、无患子、竹子和橡胶树为研究对象,提出了三类有效特征:树木相对聚类特征、点云分布特征和树木表观特征,列举了68个特征参数。采用支持向量机在交叉验证中对训练数据集进行检验计算,确定最优的特征参数组,最终在测试数据集中进行树种分类。研究结果表明:基于树木相对聚类特征的最优特征参数组进行树种分类的平均分类精度较低(45%);基于点云分布特征的最优特征参数组进行树种分类的平均分类精度有所增加(58.8%);基于树木表观特征的最优特征参数组进行树种分类的平均分类精度较高(63.8%);基于三类特征的13个最优特征参数进行树种分类的平均分类精度最高(87.5%)。此外,由于水杉与其他树种形态差异较为明显,在分类中表现突出,错判率最低(6.5%)。所提方法具有较高的可行性,为获得更准确的森林树种分布提供了强有力的工具。