用深度学习(DL)的方法对蛋白质O-糖基化位点进行了预测。首先用SMOTE方法处理非平衡数据集,对较少一类的样本用"近亲繁殖"的方法产生新的样本,弥补"欠采样"或"过采样"造成的预测误差;然后用深度学习中的深度玻尔兹曼机神经网络(DBM)进行分类(预测),并用多数投票法对结果进行集成。实验结果表明,DBM是预测O-糖基化位点的行之有效的方法。