摘要
实时、准确的短期交通流预测是智能交通系统的基础和关键技术之一.由于灰狼优化算法(GWO)存在收敛速度慢、易陷入局部最优解等缺陷,为进一步提升短期交通流预测的精度,提出了基于改进灰狼算法(IGWO)优化支持向量机(SVM)的短期交通流预测模型.首先,本文提出引入帐篷(Tent)混沌序列初始化灰狼种群,更改收敛因子的线性递减公式,对灰狼群体进化差分丰富种群多样性等方法提高算法的收敛速度和收敛精度.之后,通过对8个测试函数的计算,并与粒子群算法(PSO)、GWO进行对比,证明IGWO的先进性.最后,建立IGWO-SVM短期交通流预测模型,并通过实际数据对比分析IGWO-SVM、GWO-SVM、PSO-SVM、SVM这4种短期交通流预测模型的预测效果.对比结果表明:IGWO-SVM具有良好的鲁棒性和泛化能力,可以对短期交通流进行精确预测.
-
单位土木工程学院