基于自优化深度网络的模型攻击方法

作者:吴吉; 王月娟; 景栋盛
来源:软件工程, 2021, 24(11): 39-41.
DOI:10.19644/j.cnki.issn2096-1472.2021.011.010

摘要

机器学习方法常使用私有数据来训练模型以期获得更好的效果。然而,非授权用户可以通过模型输出来判断数据是否参与训练,破坏了数据隐私安全。对此,提出了基于深度优化网络的模型攻击方法,从攻击者的角度出发,分析攻击方法原理,有针对性地防御对模型的攻击,增强模型的隐秘性。所提方法自动对模型进行攻击,获得自优化的参数,提高攻击的准确度,充分挖掘模型中的安全缺陷,揭示模型的可改进之处,改善模型的安全性。在CIFAR-100数据集上进行了实验,得到AUC值为0.83,优于base方法。实验结果验证该方法能有效地提升攻击效果。