摘要

社会标签系统是Web2.0中提出的概念,旨在更好地表达用户的兴趣和意愿。而标签聚类是社会标签系统的个性化推荐中一个重要的研究课题。本文研究了如何基于标签聚类与用户模型来进行个性化推荐的方法。通过计算标签的相似度进行标签聚类,结合用户模型,根据标签聚类结果做出推荐。通过采用Cite ULike公布的数据集进行实验证明,与未采用标签聚类的推荐方法相比,本方法不仅可提高推荐的命中率,优化目标资源的排名,而且能为用户发现更多新的感兴趣的资源。