摘要

在高斯噪声条件下,卡尔曼滤波器(KF)能够获得系统状态的一致最小方差线性无偏估计.但当噪声非高斯,KF性能将严重下降.观测噪声非高斯现象在深空探测自主导航中经常遇到,然而现有模型可能存在着精度不高、稳定性不强或者计算复杂度较高的缺点.针对这种现状,本文在传统强跟踪卡尔曼滤波器(STKF)中新息正交原则的基础上,推导了适用处理非高斯观测噪声的强跟踪卡尔曼滤波器(STKFNO),并将其嵌入到无迹卡尔曼滤波(UKF)框架下形成适用处理非线性系统非高斯观测噪声的强跟踪无迹卡尔曼滤波器(STUKFNO).所提出的算法被应用到深空光学自主导航系统中,仿真结果表明所提出的算法能够较好地应对观测噪声的非高斯性.