摘要

交替方向乘子法(ADMM)是一个求解可分离凸优化问题的的有效方法,然而,当目标函数存在非凸函数时,ADMM或许不收敛。本文提出一类带线性等式约束的非凸两分块优化问题的惯性对称正则化交替方向乘子法。在适当的假设条件下,建立了算法的全局收敛性。其次,在效益函数满足Kurdyka-Lojasiewicz(KL)性质时,建立了算法的强收敛性。最后,对算法进行了数值实验,结果说明算法是一种有效的方法。