受气温、日照、风速、水汽压等因子随机变化的影响,参考作物腾发量时序过程具有非线性、多时间尺度变化等特性.为研究参考作物腾发量在时间尺度上的分布规律,提出了一种基于小波变换与人工神经网络相结合的参考作物腾发量预测模型.该模型吸取了小波分析的多分辨分析功能和人工神经网络的非线性逼近能力,具有较高的预测精度.以韶山灌区参考作物腾发量时间序列为样本,论述了上述模型的优越性.