摘要

车标作为车辆身份的关键特征之一,在车辆的监控与辨识中发挥着重要作用。由于自然场景复杂多变,对其中的车标进行准确识别仍具有很大的挑战性。目前公开数据库很少且存在诸多局限,导致研究缺乏可信度和实用性。本文建立了一个面向自然场景的全新数据集,包含多种采集环境下的10 324幅、67类车辆图像。基于此数据集开展应用研究,提出一个目标检测与深度学习相结合的车标识别方法,包括车标区域定位和车标种类预测两大步骤。实验表明,该方法对复杂背景有较强的适应性,在涉及30种车标的分类任务中达到89.0%的总体识别率。