部分联合学习模型使用同一个编码器对实体识别和关系抽取这两项任务进行编码,但是单个编码器不足以捕获同一空间中两个任务所需的信息,本文通过使用序列编码器获取实体标签,表格编码器获取关系标签的双编码方式改善这一缺陷;与此同时,为了让整个模型更快、更好的收敛到理想效果,在双编码器模型的基础上加入了最小风险训练来优化全局损失函数。与现有的主流模型在4个标准数据集上进行对比发现,本文模型相较主流模型在评价指标上均有一定程度的提升。