摘要

利用最新的深度学习算法,即卷积长短期记忆(Convolution Long-Short Term Memory)神经网络,构建基于深度学习的人工智能短临预报系统,以广州地区2019年3-5月雷达观测的数据为输入进行训练,然后进行短期1h内的降水预报。利用常用的统计评分指标(探测率POD、误报率FAR、临界成功指数CSI,相关系数CC)检验模型。结果表明,预报结果与实际观测的相关系数在1h内预报均保持在0.6以上,在1h内预报探测率均保持在80%以上,临界成功指数在降水强度为10mm·h-1时,基本保持在60%,误报率均小于40%。

全文