智能停车系统中车位检测易受天气变化、障碍物遮挡和背景干扰等影响而导致车位检测准确率降低,为了解决该问题,文中研究了基于深度学习的停车场车位占泊检测技术。首先,给出了基于改进YOLO的单车位检测算法,其把YOLO网络每层的输入归一化处理以有效避免过拟合,且把全连接层替换为全卷积层以提取多种尺寸输入的特征;然后,研究了基于改进SSD的多车位检测算法,其采用优化的ResNet网络替换原SSD的VGG网络为且优化了激活函数。实验和测试结果表明,所提方法能够有效提高单/多车位检测准确率。