摘要

针对脉络膜与巩膜间对比度低,脉络膜分割存在脉络膜下边界模糊,难以界定等问题,提出了融合注意力机制的TransGLnet脉络膜自动分割网络,在卷积层引入全局注意力模块(Global Attention Module,GAM),在特征之间应用矩阵乘法,在整体空间位置的多个特征之间建立非线性交互,在不使用大量参数的情况下提取全局特征;在卷积层和Transformer编码器之间引入局部注意力模块(Local Attention Module,LAM),以1/4特征图为基本单元探索局部特征,特征图元素位置移动规则为保持行位置的元素不变,将列位置的元素由大到小重新排列。两模块融合可令网络有效兼顾全局与局部特征。实验结果表明,TransGLnet网络的Dice值为0.91,准确率为0.98,平均交并比为0.89,F1值为0.90,豪斯多夫距离为6.56。与现有脉络膜自动分割方法相比,本文方法的各项性能指标均有提高。TransGLnet脉络自动分割网络具有较好的稳定性,可供临床借鉴。