为掌握青岛市空气质量变化特征,为空气质量管控提供参考,以2014—2021年青岛市空气质量指数月统计历史数据为基础,通过深度学习算法中的多层神经网络建立了AQI与PM2.5等6个主要污染物的预报模型,对青岛市空气质量的影响因素进行研究,并基于SARIMA模型预测了各污染物的浓度值,结合污染物浓度预测值和预报模型对AQI值进行了预测。根据预测结果,给出了改善青岛市空气质量的建议。