摘要

基于手部骨骼的动态手势识别是计算机视觉和人机交互领域的一个研究热点.手势涉及的关节在空间上分布更紧密,相关性更强.针对目前基于骨骼的动态手势识别存在空间特征复杂、识别计算速率缓慢等问题,提出一种注意力引导空域图卷积简单循环单元(ASGC-SRU)网络.首先,将空域图卷积嵌入至SRU的门结构中,使得具有高速并行计算能力的SRU能够对复杂手势的时域和空域信息进行建模;然后,引入一种指关节注意力引导模块,使得更重要的指关节具有更高的关注度;最后,引入一种注意力增强空域图丢弃(ASD)的正则化方法,缓解网络过拟合的弊端.为验证所提出方法的有效性,在公认的动态手势数据集SHREC’17和DHG 14/28上进行大量实验,实验结果表明,所提出方法取得了较高的识别准确率,同时保持优良的计算效率.

全文