摘要

深度学习是人工智能机器学习中一个新的研究方向,是学习样本数据内在规律的技术工具。当前,基于深度学习的目标检测技术在交通事件检测领域的影响日渐显著。随着近年大型城市市政道路的发展,桥梁、隧道在重要交通节点中发挥作用。结合上海桥隧运营管理过程中遇到的实际问题进行分析、研究。基于YOLO+Deepsort目标检测算法,搭建深度学习神经网络模型。采集城市隧道的综合监控系统所产生的交通事件数据,自定义预处理后作为数据集,用于训练、验证模型。训练完成的模型提高隧道工况下检测效率及准确率,解决隧道运维工作中遇到的实际问题。从新的角度尝试隧道监控的智能化迭代,继而替代繁杂的人工操作,为运维决策提供依据。