摘要
针对样品的近红外(NIR)光谱与其物理化学性质之间存在的非线性关系,提出了一种结合等距映射(Isomap)和偏最小二乘(PLS)的非线性建模新方法。Isomap是一种新的非线性降维方法,属于流形学习方法,能有效地发现高维数据中的本真低维结构。Isomap-PLS建模方法首先用Isomap对高维NIR光谱数据作非线性降维,再用PLS降维并建立校正模型。将Isomap-PLS建模方法分别应用于两个公开的NIR光谱标准数据集,并与PLS单独建模进行比较。结果表明,在两个数据集上,用Isomap-PLS方法建立的校正模型比单独用PLS算法建立的校正模型具有更小的交叉验证均方根误差(RMSECV);对某些性质数据,Isomap-PLS模型比PLS模型的RMSECV值要小2~5倍。因此,Isomap能够有效反映NIR光谱中存在的非线性结构,Isomap-PLS比PLS具有更好的建模与预测能力。
- 单位