摘要

随着YouTube、Flickr和Last.fm等社会化网络的兴起,标签系统在日常生活中扮演着越来越重要的作用.为了给用户提供更优质的推荐,分析用户为不同资源打标签的行为就显得尤为重要.本文将主要的社区发现算法应用到标签系统中的聚类分析中,并比较它们在不同数据集上的表现,设计出针对标签系统的个性化推荐算法.实验结果表明,本文提出的算法能很好的发现不同用户的兴趣,提高推荐系统的质量.