针对传统卷积神经网络层级较为浅,对物体识别精确度较低的原因,利用改进的深层卷积网络VGG16模型检测视频运动目标.首先,预处理过程中对数据集进行剪裁和旋转操作,补充数据集数量,以解决前期图像资源不足等问题;其次,在PASCAL VOC数据集上先预训练模型,接着加载自定义视频数据集对预训练模型进行第二次训练.实验结果表明,该网络模型能很好用于视频目标识别,提高了检测精确度,有效减少网络参数计算量,降低硬件内存资源消耗,具有较强的鲁棒性.