为解决在样本有限的情况下高光谱图像分类精度不高的问题,提出一种基于卷积神经网络的高光谱遥感图像分类方法。引入滤波、增加虚拟样本、标准化等预处理技术,使分类模型对地物样本种类和数量的敏感度降低;通过对梯度下降法和学习率计算方法进行优化,降低计算复杂度和计算时间;设计符合高光谱数据特点的网络结构,提高分类方法的泛化性。实验结果表明,与传统分类方法进行比较,该方法有较高的分类精度。