摘要

为准确预测水文条件复杂的黄河开封段水位变化,提出一种基于ARIMA-CNN-LSTM的多变量水位预测模型。该模型通过综合考虑水位的多重影响因素,结合卷积神经网络(CNN)和长短时记忆网络(LSTM)来学习数据中的非线性特征,同时应用ARIMA模型进行参数校正,从而实现对黄河开封段水位未来一段时间的预测。结果表明:相较于LSTM模型、CNN-LSTM模型、ARIMA模型以及BP神经网络模型,ARIMA-CNN-LSTM模型的预测精度更高,对峰值反应更灵敏,可以更加精准地预测未来一段时间的黄河开封段水位变化。