摘要

为了提高医疗数据的共享安全性,提出了一种基于遗传算法的联邦学习算法.该算法将单个用户到服务器的数据传输减少到单个适应度值,用户不需要上传模型的梯度信息,避免了传输数据泄露带来的问题.使用卷积神经网络对脑电波EEG信号进行分类,使用改进的遗传算法对模型进行优化,设计了合适的编码、交叉、变异算子以及精英保留策略对问题进行求解.实验结果表明,该算法可以得到较好的求解精度,较好保障了医疗数据的隐私安全.