摘要
套利定价理论认为理想的风险因子需要能够同时对资产期望收益率(一阶矩)和方差-协方差矩阵(二阶矩)定价,因此在构造风险因子的过程中,将收益率截面的一、二阶矩信息联系起来至关重要.基于资产定价和投资组合理论,本文认为夏普率是联系一、二阶矩的理想指标,并基于该指标提出了一种均值方差有效的稀疏主成分分析算法,构造潜在风险因子,该算法在主成分分析(principal component analysis, PCA)的基础上引入了夏普率信息,即通过在PCA的目标函数中引入L1正则项对原主成分进行稀疏调整,并以最大化夏普率的原则来确定惩罚项系数.经过这一过程,由本文算法提取的因子可在捕捉股票市场共同运动的同时也能实现对截面资产期望收益率差异的定价.且进一步解析发现,本文所构造因子的权重结构与经典经济因子的权重结构类似,这说明本文所提的统计因子本质上与经济因子的金融逻辑是一致的.本文利用A股市场2002年4月至2022年5月的月频数据,基于A股市场上常见的18个异象特征依次构造5×5和10×10交叉排序组合数据集、异象特征单排序组合数据集来检验本文算法的定价能力.结果显示,由本文算法构造的因子模型的定价能力优于传统三因子、四因子、五因子模型,并且也优于PCA、风险溢价PCA这类统计因子模型,表现为测试资产的GRS统计量更小,并且由本文算法提取的因子可以实现更大的最优夏普率.进一步发现,虽然经本文算法提取的因子属于统计因子,但其同样具有较明显的经济学含义,其中基于5×5交叉排序组合提取的前三个主成分的权重分布可分别还原经济因子模型中的市场因子、规模因子、价值因子.以上结论在10×10交叉排序组合数据集和更为一般的异象特征单排序组合数据集中同样成立,表明本文结论具有一定的稳健性.
- 单位