摘要

针对应用常规红外图像非均匀性校正方法在变积分时间时,图像灰度值会发生改变的现象,提出了一种适应积分时间调整的红外图像非均匀性校正方法.该方法将不同积分时间、不同温度的黑体定标数据和对应的理论红外辐射量整合为一个整体数据库,借助神经网络损失函数和误差反向传递机制,对模型中的校正系数进行学习.训练得到的校正网络能在红外相机积分时间实时调整过程中,保证图像均匀地稳定输出,对后端红外图像处理有着重要意义,并验证训练该网络不需要大量定标数据.而针对红外探测器响应漂移的现象,则提出了在线修正校正系数的方法以有效应对.