摘要

复杂系统数据序列集未来行为的预测是一个难点,利用数据挖掘实现预测是有潜力的技术途径.针对包含多元时间序列和非时间序列的实时演进数据集,整合序列分割、聚类、模式在线匹配等处理流程,提出了一种主题发现与联合决策相结合的预测方法.在整个方法构建中,将拟构造的主题发现式预测和联合决策预测融合进前期的序列分割与聚类中,采用多时间粒度、多跨度对序列进行对应分层与分割,聚合形成各层的标准模式集.再以标准模式集,依照预测策略,反向搜索具有高稳定性延展行为的复合模式作为主题模式集,从而实现基于在线模式匹配的行为预测.最后,采用分布式并行计算的架构实现整个处理算法.理论推导和实验数据分析证明,相比传统的时间序列预测方法准确度得到提高.

  • 单位
    中国人民解放军63850部队

全文