摘要
针对传统EMD易产生模态混叠,原始SVM、RVM方法存在核函数选取困难、识别效率低等问题,提出一种基于变分模态分解(VMD)、排列熵(PE)以及混合蝙蝠算法(BA)优化的多分类相关向量机(M-RVM)的轴承故障智能诊断方法。首先,VMD分解故障信号,获得本征模态函数(IMF);然后将PE用于IMF的故障特征提取过程,形成特征序列;最后,将所得的特征序列输入基于混合BA优化的M-RVM故障诊断模型,对不同故障进行分类识别。对试验数据的分析结果表明,基于VMD-PE与M-RVM的滚动轴承故障诊断可以提高轴承故障诊断的准确度。
- 单位