摘要

针对传统数据异常智能检测技术无法实现检测率与误检率同步的问题,提出一种基于云计算的数据异常智能检测技术。该技术结合聚类分析算法,通过计算相似度实现异常数据与正常数据之间的分类,从而达到数据异常检测的目的,其过程如下:首先对待检测数据进行预处理,然后从预处理后的数据中提取代表性特性,接着计算待检测数据与数据特征之间的相似度,并按照相似度大小筛选出异常数据,最后进行异常数据响应,并进行相应处理。结果表明:与结合神经网络算法、深度学习算法、随机森林算法等传统数据异常检测技术相比,本技术在保证检测率的同时,降低了误检率,误检率分别降低0.19%、0.4%、0.53%。