摘要
针对公共空间中人脸情绪识别准确率不高的问题,提出一种结合不同感受野和双流卷积神经网络的人脸情绪识别方法。首先建立基于公共空间视频的人脸表情数据集;然后设计一个双流卷积网络,以尺寸为224×224的单帧人脸图像输入卷积神经网络(convolution neural network,CNN),分析图像纹理静态特征;以尺寸为336×336视频序列输入CNN网络,再将提取的特征送入长短期记忆网络(long short term memory network,LSTM)分析局部、全局运动特征;最后通过Softmax分类器将两通道网络的描述子进行加权融合,得到分类结果。结果表明,本文方法能有效利用不同感受野的信息特征清晰识别公共空间的4种典型人脸情绪,识别准确率达88.89%。
- 单位