摘要

针对图片资源的视觉特征与高级知识语义不一致的挑战,提出一种新的知识点自动标注算法,称为基于知识场景的情境超图卷积网络(SHGCN),以便高效组织管理教育领域中的图片数据,促进知识理解与有效利用,实现教育智能化。该算法在提取图片资源显性视觉特征的同时,又挖掘了隐含在细粒度区域的隐性知识信息。首先,利用Faster R-CNN和OCR技术来识别知识对象和坐标文本等知识实体,这些知识实体特征融合后作为该图片的知识向量;其次,提出双筛选机制来生成不同类型的知识场景,并将知识场景作为超边来构建情境超图,建模蕴含相似情境信息的图片间高阶知识相关性。最后,利用超图卷积实现知识相似图片的情境信息聚合,实现“视觉-语义”到“视觉-语义-知识”的转化。本文还构建了一个物理学科的图片数据集来训练和验证SHGCN。实验结果表明,SHGCN在提取图片显性视觉信息的基础上,进一步挖掘隐性知识信息,其性能优于基线方法。