摘要
为了研究不同车辆火灾规模下大跨径双层悬索桥的抗火性能,以主跨2 180 m的特大跨径双层悬索桥为研究对象,首先利用火灾动力学软件FDS建立悬索桥热分析模型,研究不同火源功率、火源位置、环境风向等因素对双层悬索桥的温度分布规律的影响,得到悬索桥关键构件温度-时间关系曲线。然后,利用有限元软件ABAQUS开展双层悬索桥热-力耦合数值仿真分析,选取高温下钢材及高强钢丝热工参数,研究悬索桥吊杆、加劲梁、桥面板的高温力学性能时变特征,对比不同环境风速、桁架高度、火源特性及位置等工况下双层悬索桥结构应力、变形及构件损伤行为,确定特大跨径双层悬索桥抗火关键部位及其耐火需求。最后,基于数值模拟结果,初步提出了双层悬索桥结构防火设计建议。结果表明:受火桥段的应力发展及失效位置与火源位置、功率及环境风向密切相关。当车辆起火位置位于桥梁下层时,由于桥面铺装隔热作用,下层结构受火灾影响较小。而热气流致使上部结构温度明显高于下部,火源附近的上层纵横梁、桥面板和吊杆等构件温度快速上升。由于钢材热膨胀效应,导致构件快速升温膨胀,膨胀时受到周围杆件的限制,导致压应力逐步增加。(1)火源位置:当火源位于横桥向中间车道,高应力区域集中在非机动车道上层纵横梁及桥面板。当火源位于横桥向非机动车道时,火源附近的上层桥面板发生强度破坏。(2)火源功率:随着火源功率增加,火场对桥梁高温影响效应增强,关键构件温度均逐渐增大,高温影响范围变大。火源功率为30 MW,在6 000 s内未发生强度破坏;火源功率为100 MW,其耐火时间为653 s;火源功率为200MW,其耐火时间为413 s。可以看出,随着火源功率增大,桥梁结构耐火时间显著降低,最大降低可达93.11%。(3)环境风向:当火源位于横桥向应急车道,在外向风作用下,与两侧桁架相连的上层桥面板发生强度破坏;在内向风作用下,非机动车道附近的上层桥面板发生强度破坏。在内向风作用下受火桥段耐火时间为528s,与外向风工况下相比,其耐火时间增加了3.0%。针对车辆火灾下大跨径双层悬索桥,应根据受火结构危险性进行抗火等级划分,并按等级进行分级抗火防护设计。
- 单位