摘要

垃圾邮件具有特征维数高、样本不平衡等特点,针对近邻算法(KNN)或支持向量机(SVM)存在虚警率高等难题,基于组合优化理论,提出基于KNN-SVM的垃圾邮件过滤组合模型。首先提取垃圾邮件的特征项,并构建垃圾邮件过滤模型的输入向量,然后采用KNN对垃圾邮件训练样本进行选择,将训练样本缩减到k个,并采用支持向量机对k个样本训练和建模进行垃圾邮件过滤,最后采用中文邮件集对KNN-SVM的性能进行分析。结果表明,KNN-SVM提高了垃圾邮件过滤的准确率,大幅度降低了虚警率,而且垃圾邮件的过滤速度可以满足邮件处理的在线需求。

  • 单位
    常州大学怀德学院

全文