摘要
针对麻雀搜索算法(SSA)收敛速度慢,易陷入局部最优的问题,提出一种螺旋探索与自适应混合变异的麻雀搜索算法(SHSSA).首先,采用一种无限次折叠的ICMIC混沌初始化种群,增加种群多样性和遍历性,为全局寻优奠定基础;其次,融入一种螺旋探索策略,增强发现者探索未知区域的能力,提高算法的全局搜索性能;然后,提出一种基于精英差分和随机反向的混合变异策略,加快算法收敛速度,改善算法跳出局部最优的能力.基于12个基准测试函数的仿真结果表明,SHSSA与其余3种算法及2种改进的麻雀搜索算法相比,收敛速度更快、寻优精度更高,稳定性更强.最后,将SHSSA应用于多阈值图像分割中,实验结果表明,相较于基本SSA算法,SHSSA的分割速度和分割精度均得到了提升.
- 单位