摘要
提出了以长短期记忆网络(LSTM)与卷积神经网络(CNN)为主要框架的深度学习网络,基于该网络实现模式识别。LSTM-CNN以时域曲线及其短时傅里叶变换(STFT)结果作为网络输入,LSTM提取输入信号的时序特征,CNN提取时域曲线的轮廓特征及能量特征。实验中以相敏光时域反射仪(φ-OTDR)为传感系统完成数据采集。将LSTMCNN与传统的人工神经网络(ANN)及CNN对比,LSTM-CNN在各项评价指标中均处于最优状态,实现了φ-OTDR模式识别的既定目标,为实际的工程产品开发提供了概念证明与演示示例。
-
单位天津大学; 精密测试技术及仪器国家重点实验室; 电子工程学院